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1. INTRODUCTION

The properties of the Cauchy matrix for equations with deviating argument were studied in [1–5]
etc. For some special deviations F (·), the solution of the equation

x(t) − λ

t∫

α

x(F (·))dq = f(t) (1)

admits a closed-form representation using the operations of a special function algebra. (The case
F (ξ) = µξ was considered in [6], and the case F (ξ) = µξν was studied in [7].) Here α, t ∈ D

.= [a, b],
λ ∈ R, x, q, f ∈ C(D, R) are continuous functions, q is of bounded variation, and F : D → D is
a continuous function. An analysis of this representation necessitates a more general statement of
the original equation (1) in the generalized (F -integral) form

x(t) −
t∫

α

(dQ ∗ x) = f(t), (2)

where the operator x(t) →
∫ t

α
(dQ ∗ x) is closely related to the multiplication ∗ in the algebra

generated by the deviation F . The aim of the present paper is to construct the Cauchy series for
Eq. (2). The results were partially announced in [8, 9]. We represent the exposition in the scalar
setting.

2. F -MULTIPLICATION OF SERIES

We fix a closed interval D
.= [a, b] and � ∈ N. By C .= C

(
D�

)
we denote the algebra (over

the field R) of continuous functions x : D� → R. Further, let F : D → D be a given continuous
function. By C[λ] .= C

(
D�

)
[λ] we denote the linear space of formal power series (in powers of

λ ∈ R) of the form
∑

k λkxk
.=

∑∞
k=0 λkxk with function coefficients xk ∈ C. For arbitrary x ∈ C

and k, we use the notation

x[k] .= x[k] (t1, . . . , t�)
.= x

(
F [k] (t1) , . . . , F [k] (t�)

)
,

where F [k](ξ) .= F (F (. . . F (ξ) . . .)) is the k-fold composition of F . It is natural to set F [0](ξ) = ξ;
therefore, x[0] = x. Obviously,

(
x[k]

)[m]
= x[k+m] for any k,m = 0, 1, . . .

The F -product of series
∑

k λkxk and
∑

m λmym in the space C[λ] is defined as the series in C[λ]
given by the right-hand side of the formula

∑
k λkxk ∗

∑
m λmym =

∑
n λn

∑
k+m=n xky

[k]
m . The bi-

nary operation ∗ is referred to as F -multiplication.
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Theorem 1. The space C[λ] equipped with the operation of F -multiplication is a unital asso-
ciative algebra over R (which will be denoted by CF [λ] .= CF

(
D�

)
[λ]).

Proof. For the series x
.=

∑
k λkxk, y

.=
∑

m λmym, and z
.=

∑
n λnzn, the expressions x ∗ y and

y ∗ z are equal to
∑

i λ
i
∑

k+m=i xky
[k]
m and

∑
i λ

i
∑

m+n=i ymz[m]
n , respectively. Consequently,

(x ∗ y) ∗ z =
∑

j

λj
∑

i+n=j

∑
k+m=i

xky
[k]
m z[i]

n =
∑

j

λj
∑

k+m+n=j

xky
[k]
m z[k+m]

n

=
∑

j

λj
∑

k+i=j

xk

∑
m+n=i

y[k]
m z[k+m]

n =
∑

j

λj
∑

k+i=j

xk

( ∑
m+n=i

ymz[m]
n

)[k]

= x ∗ (y ∗ z),

which implies that F -multiplication is associative. The unity is given by the series e
.=

∑
n λnδn0

(where δn0 is the Kronecker delta).

Lemma 1. The series x
.=

∑
k λkxk is invertible in the algebra CF [λ] if and only if the coefficient

x0 is invertible in the algebra C [which is equivalent to the condition x0(t) �= 0 for all t ∈ D].

The relation x ∗ y = e, where y
.=

∑
m λmym, is valid if and only if x0yn +

∑n

k=1 xky
[k]
n−k = δn0

for all n = 0, 1, . . . ; therefore, the right invertibility of the series x is equivalent to the invertibility
of the element x0 in C. The left inverse series z

.=
∑

n λnzn is found from the system

znx[n]
0 +

n∑
m=1

zn−mx[n−m]
m = δn0, n = 0, 1, . . . ;

moreover, since CF [λ] is an associative algebra, it follows that the series y and z coincide.

Lemma 2. The series 1−
∑∞

k=1 λkxk and 1+
∑∞

m=1 λm
∑

p1+···+pr=m

∏r

i=1 x[m−p1−···−pi]
pi

are mu-
tually inverse in the algebra CF [λ]. The inner summation in the second series is over all ordered
sets (p1, . . . , pr) of nonnegative integers such that p1 + · · · + pr = m.

Proof. Let u0 = v0 = 1, un = −xn, vn =
∑

p1+···+pr=n

∏r

i=1 x[n−p1−···−pi]
pi

, n ∈ N, u
.=

∑
k λkuk,

v
.=

∑
m λmvm, and wn =

∑
k+m=n ukv

[k]
m , n = 0, 1, . . . Obviously, w0 = 1, w1 = u0v

[0]
1 + u1v

[1]
0 =

v1 + u1 = x
[0]
1 − x1 = 0, and the chain of relations

wn = u0v
[0]
n +

n−1∑
p=1

upv
[p]
n−p + unv

[n]
0 = vn − xn −

n−1∑
p=1

xp

∑
p1+···+pr=n−p

r∏
i=1

x[n−p1−···−pi]
pi

is valid for n > 1. By setting pr+1 = p and by passing from repeated summation to simultaneous
summation with respect to all variables, we continue the chain of relations:

wn = vn − xn −
∑

p1+···+pr+1=n
pr+1<n

(
r∏

i=1

x[n−p1−···−pi]
pi

)
x[n−p1−···−pr+1]

pr+1

= vn −
∑

p1+···+pj=n

j∏
i=1

x[n−p1−···−pi]
pi

= 0.

(We have replaced r + 1 by j and transferred xn into the sum.) Therefore, wn = δn0, whence
we obtain u ∗ v = e.
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Remark 1. The power series 1 −
∑∞

k=1 λkak and 1 +
∑∞

m=1 λm
∑

p1+···+pr=m

∏r

i=1 api
with

numerical coefficients are mutually invertible in the sense of natural multiplication of series.

3. THE RIEMANN–STIELTJES F -INTEGRAL

Definition 1. We fix i ∈ {1, . . . , �}, a closed interval E ⊆ D, and series u, v ∈ CF

(
D�

)
[λ]. If,

for all k,m = 0, 1, . . . , there exist Riemann–Stieltjes integrals
∫

E

(
uk · div

[k]
m

)
, then the series

∫

E

(u ∗ div) .=
∑

n

λn
∑

k+m=n

∫

E

(
uk · div

[k]
m

)
(3)

is called the left F -integral of the series u with respect to the series v over the variable ti ∈ E. If,
for all k,m = 0, 1, . . . , there exist Riemann–Stieltjes integrals

∫
E

(
diuk · v[k]

m

)
, then the series

∫

E

(diu ∗ v) .=
∑

n

λn
∑

k+m=n

∫

E

(
diuk · v[k]

m

)
(4)

is called the right F -integral of the series v with respect to the series u over the variable ti ∈ E.

Each of the F -integrals (3) and (4) is linear with respect to each of the arguments and satisfies
the additivity property (provided that all related F -integrals exist).

Theorem 2. The existence of one of the F -integrals
∫ β

α
(u ∗ div) and

∫ β

α
(diu ∗ v) implies the

existence of the other, and

β∫

α

(u ∗ div) +

β∫

α

(diu ∗ v) = (u ∗ v)|βα, (5)

where α and β are substituted for ti.

The simultaneous existence of the F -integrals (3) and (4) follows from the simultaneous existence
of the integrals

∫ β

α

(
uk · div

[k]
m

)
and

∫ β

α

(
diuk · v[k]

m

)
, and relation (5) follows from the integration by

parts formula.
We restrict the investigation of the existence of F -integrals to the following assertion.

Theorem 3. If, for series u, v ∈ CF

(
D�

)
[λ], the coefficients uk of the series u are of bounded

variation with respect to the variable ti, then the F -integrals (3) and (4) exist for any closed interval
E ⊆ D.

Proof. To prove the theorem, it suffices to note that the coefficients of the F -integral (4), that
is, the sums

∑
k+m=n

∫
E

(
diuk · v[k]

m

)
, exist, since all functions uk are of bounded variation with

respect to the variable ti and all function v[k]
m are continuous [10, p. 216].

Lemma 3. If u, v,w ∈ CF (D)[λ] are series such that the coefficients uk of the series u are of
bounded variation, then

∫
E
(du(s) ∗ (v(s) ∗ w(τ))) =

∫
E
(du ∗ v) ∗ w(τ) for any E ⊆ D.

First, note that the F -multiplication and F -integration on the left-hand side in the formula are
performed in the algebra CF (D2) [λ], and those on the right-hand side, in the algebra CF (D)[λ].
The series v(s) ∗ w(τ) and

∫
E
(du ∗ v) are equal to

∑
i

λi
∑

m+n=i

vm(s)w[m]
n (τ) and

∑
i

λi
∑

k+m=i

∫

E

(
duk · v[k]

m

)
,
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respectively. Consequently, we have the chain of relations

∫

E

(du(s) ∗ (v(s) ∗ w(τ))) =
∑

j

λj
∑

k+i=j

∫

E

(
duk(s) ·

∑
m+n=i

v[k]
m (s)

(
w[m]

n

)[k]
(τ)

)

=
∑

j

λj
∑

k+m+n=j

∫

E

(
duk · v[k]

m

)
w[k+m]

n (τ) =
∑

j

λj
∑

i+n=j

∑
k+m=i

∫

E

(
duk · v[k]

m

)
w[i]

n (τ)

=
∫

E

(du ∗ v) ∗ w(τ).

Remark 2. The above-proved formula implies that a series independent of the integration
variable and written on the right can be transferred outside the F -integral. At the same time,
one can readily show that, in general, the series

∫
E
((u(t) ∗ v(s)) ∗ dw(s)) and u(t) ∗

∫
E
(v ∗ dw) are

different.
Example 1. Let D = [−1, 1], and let F : D → D satisfy the condition F (ξ) = µξ, |µ| ≤ 1. The

series Q(t) =
∑

k λkδk1t and x(t) =
∑

m λmµC2
mtm/m! satisfy the relation x(t) −

∫ t

0
(dQ ∗ x) = e.

Indeed, we have

t∫

0

(dQ ∗ x) =
∑

n

λn
∑

k+m=n

t∫

0

(
dQk · xm

(
F [k](·)

))
=

∞∑
n=1

λn

t∫

0

(ds · xn−1(µs))

=
∞∑

n=1

λn

t∫

0

1
(n − 1)!

µC2
n−1(µs)n−1ds =

∞∑
n=1

λn 1
n!

µC2
ntn = x(t) − e.

The series Q(t) and x(t) are uniformly convergent on D for any λ ∈ R; consequently, the equation
x(t) −

∫ t

0
(dQ ∗ x) = e is a generalization of the equation x̃(t) − λ

∫ t

0
x̃(µs)ds = 1 (see the third

element of the chain), or the problem dx̃(t)/dt = λx̃(µt), x̃(0) = 1. Here x̃ =
∑

n λnxn is the sum
of the series.

Example 2. We fix the function F (ξ) = ξq, q > 0, defined on the interval D = [0, 1]. If
Q(t) =

∑
k λkδk1t

p and x(t) =
∑

m λmtphm(q)/Gm(q), where h0(q)
.= 0, hm(q) .=

∑m−1

i=0 qi, G0(q)
.= 1,

Gm(q) .=
∏m

i=1 hi(q), m ∈ N, p > 0, then x(t) −
∫ t

0
(dQ ∗ x) = e. Indeed,

t∫

0

(dQ ∗ x) =
∑

n

λn
∑

k+m=n

t∫

0

(
dQk · xm

(
F [k](·)

))
=

∞∑
n=1

λn

t∫

0

(dsp · xn−1 (sq))

=
∞∑

n=1

λn

t∫

0

1
Gn−1(q)

(sq)phn−1(q)
dsp =

∞∑
n=1

λn 1
Gn(q)

tphn(q) = x(t) − e.

The series x(t) is uniformly convergent on D for all λ (if q ≥ 1) and for |λ| < 1/(1 − q) (if q < 1),
and the equation x(t) −

∫ t

0
(dQ ∗ x) = e corresponds to the equation x̃(t) − λ

∫ t

0
x̃ (sq) dsp = 1.

The examples suggest that the equation x(t) −
∫ t

α
(dQ ∗ x) = e with variable F (·) is solvable in

the algebra CF [λ], and we proceed to a detailed discussion of this topic.

4. EMBEDDING OF EQUATIONS WITH DEVIATING ARGUMENT
IN A FAMILY OF F -INTEGRAL EQUATIONS

We fix a series Q ∈ CF [λ] .= CF (D)[λ] whose components are of bounded variation. By The-
orem 3, for arbitrary α, t ∈ D, there exists an F -integral (Q x)(t) .=

∫ t

α
(dQ ∗ x) for any series

DIFFERENTIAL EQUATIONS Vol. 43 No. 10 2007
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x ∈ CF [λ]. One has the inclusion Q x ∈ CF [λ] (moreover, the components of the series Q x are
of bounded variation); consequently, we can proceed to the study of Eq. (2), where f ∈ CF [λ].
In extended form, Eq. (2) reads

∑
n

λnxn(t) −
∑

n

λn
∑

k+m=n

t∫

α

(
dQk · x[k]

m

)
=

∑
n

λnfn(t),

which is equivalent to the infinite system of equations xn(t) −
∑

k+m=n

∫ t

α

(
dQk · x[k]

m

)
= fn(t), or

x0(t) −
t∫

α

(dQ0 · x0) = f0(t),

xn(t) −
t∫

α

(dQ0 · xn) = fn(t) +
n∑

k=1

t∫

α

(
dQk · x[k]

n−k

)
, n ∈ N.

(6)

If Q0 = const, then the system is of recursion character [since the integral on the left-hand side
in (6) is zero]; but if Q0 �= const, then it consists of integral equations. In both cases, the system is
uniquely solvable; therefore, Eq. (2) has a unique solution. Throughout the following, we assume
that Q0 = const.

For the special case in which Qk(·) = δk1q(·), k = 0, 1, . . . , the system acquires the form

x0(t) = f0(t), xn(t) = fn(t) +

t∫

α

(dq · xn−1(F (·))) , n ∈ N. (7)

Suppose that the series
∑

n λnxn and
∑

n λnfn are convergent (if |λ| < ε) in the metric of the space
C and one can exchange summation and integration; then from (7) we obtain

∑
n

λnxn(t) −
t∫

α

(
dq ·

∞∑
n=1

λnxn−1(F (·))
)

=
∑

n

λnfn(t),

or x̃(t) − λ
∫ t

α
(dq · x̃(F (·))) = f̃(t), where x̃

.=
∑

n λnxn and f̃
.=

∑
n λnfn are the sums of the

series. Therefore, every equation (1) can be embedded in a family of F -integral equations (2).

5. THE CAUCHY SERIES OF AN F -INTEGRAL EQUATION

Let f = e in the F -integral equation (2); i.e., fn(t) = δn0, and the coefficients of the series Q are
continuous and of bounded variation; moreover, Q0 = const. By X(t) we denote the solution of
this equation. In other words, X(t)−

∫ t

α
(dQ ∗X) = e. By (6), we have X0 = f0 = 1. By Lemma 1,

the series X(t) is invertible in the algebra CF (D)[λ]; i.e., there exists a series Y (t) such that
X(t) ∗ Y (t) = e = Y (t) ∗ X(t).

Definition 2. The Cauchy series C(t, τ) of the F -integral equation (2) is the series in the
algebra CF (D2) [λ] given by the relation C(t, τ) .= X(t) ∗ Y (τ).

Obviously, C(s, s) = e, the relation C(t, s) ∗C(s, τ) = C(t, τ) is valid in the algebra CF (D3) [λ],
and C(t, τ) and C(τ, t) are mutually inverse series in the algebra CF (D2) [λ]. The following two
properties are less obvious: C(α, τ) = Y (τ), and if α = F (α), then C(t, α) = X(t). Indeed, by (6),
we have Xk(α) = δk0; consequently, Ym(α) = δm0 and

C(t, τ)|t=α =
∑

n

λn
∑

k+m=n

Xk(α)Ym

(
F [k](τ)

)
=

∑
n

λnYn(τ) = Y (τ), (8)

DIFFERENTIAL EQUATIONS Vol. 43 No. 10 2007
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C(t, τ)|τ=α =
∑

n

λn
∑

k+m=n

Xk(t)Ym

(
F [k](α)

)
=

∑
n

λn
∑

k+m=n

Xk(t)Ym(α)

=
∑

n

λnXn(t) = X(t).

Remark 3. Since F : D → D is a continuous function, it follows that the equation α = F (α)
is solvable.

Theorem 4. The Cauchy problem satisfies the identity C(t, τ) −
∫ t

τ
(dQ(s) ∗ C(s, τ)) = e.

Indeed, since X(t) −
∫ t

α
(dQ ∗ X) = e, it follows from Lemma 3 that

t∫

τ

(dQ(s) ∗ C(s, τ)) =

t∫

τ

(dQ(s) ∗ (X(s) ∗ Y (τ))) =

t∫

τ

(dQ ∗ X) ∗ Y (τ)

=

⎛
⎝

t∫

α

(dQ ∗ X) −
τ∫

α

(dQ ∗ X)

⎞
⎠ ∗ Y (τ)

= (X(t) − X(τ)) ∗ Y (τ) = C(t, τ) − e.

Remark 4. The above-proved formula can be represented in the extended form as

C0(t, τ) = 1, Cn(t, τ) =
n∑

k=1

t∫

τ

(
dQk(s) · Cn−k

(
F [k](s), F [k](τ)

))
, n ∈ N; (9)

therefore, the (continuous) functions Cn(t, τ) are of bounded variation with respect to the first
variable. In other words, for a fixed τ ∈ D, the section Cn(·, τ) is of bounded variation; however, in
the general case, the cross-section Cn(t, ·) with fixed t ∈ D is not necessarily of bounded variation.
For example, if D = [−1, 1], Q1(t) = t, Q2(t) = 0, F (t) = t cos(π/2t) for t �= 0, and F (0) = 0, then
F : D → D is a continuous function of unbounded variation. We have C1(t, τ) = t − τ ; therefore,
C2(t, τ) =

∫ t

τ
(ds · C1(F (s), F (τ))) =

∫ t

τ
F (s)ds + F (τ)(τ − t) is a function of unbounded variation

with respect to τ .

6. CONVERGENCE OF SOLUTIONS OF F -INTEGRAL EQUATIONS

By C̃[λ] .= C̃
(
D�

)
[λ] we denote the subspace of C[λ] consisting of series x

.=
∑

k λkxk,
xk ∈ C

(
D�

)
, such that the power series

∑
k λk ‖xk‖ is convergent for small λ. [That is, there

exists an ε
.= ε(x) > 0 such that the series is convergent if |λ| < ε.] This condition is equivalent

to the convergence of the series
∑

k |λ|k ‖xk‖ in the same neighborhood. In a similar way, we de-
fine the subspace ˜CBV[λ] .= ˜CBV(D)[λ] that consists of series x

.=
∑

k λkxk, xk ∈ CBV(D), such
that the series

∑
k λk ‖xk‖BV (or

∑
k |λ|k ‖xk‖BV) is convergent for small λ. By CBV .= CBV(D)

we denote the space of continuous functions x : D → R of bounded variation, and

‖x‖ .= max
(t1,...,t�)∈D�

|x (t1, . . . , t�)| and ‖x‖BV
.= |x(a)| + Var

D
x

are the norms in C
(
D�

)
and CBV(D), respectively. Since ‖x‖ ≤ ‖x‖BV for � = 1, we have

˜CBV(D)[λ] ⊂ C̃(D)[λ]. The inequality
∥∥x[k]

∥∥ ≤ ‖x‖ is valid for arbitrary F : D → D and
k = 0, 1, . . .

DIFFERENTIAL EQUATIONS Vol. 43 No. 10 2007
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If x, y ∈ C̃[λ], then x ∗ y ∈ C̃[λ]. Indeed, we have

∑
n

|λ|n
∥∥∥∥∥

∑
k+m=n

xky
[k]
m

∥∥∥∥∥ ≤
∑

n

|λ|n
∑

k+m=n

‖xk‖‖ym‖

=

(∑
k

|λ|k ‖xk‖
)(∑

m

|λ|m ‖ym‖
)

< ∞

for small λ. The inclusions γx, x+y ∈ C̃[λ] are obvious (γ ∈ R); therefore, the subset C̃[λ] is closed
under the operations of the algebra CF [λ] and is an algebra itself. (We denote it by C̃F [λ].)

Assertion 1. If x ∈ C̃F [λ] and y ∈ CF [λ] satisfy the condition x ∗ y = e, then y ∈ C̃F [λ].

Proof. By Lemma 1, the coefficient x0 is invertible in the algebra C.
1. Suppose that x0 = 1. If x

.= 1 +
∑∞

k=1 λkxk, then, by Lemma 2,

y = 1 +
∞∑

m=1

λm
∑

p1+···+pr=m

r∏
i=1

(
−x[m−p1−···−pi]

pi

)
.

Since x ∈ C̃F [λ], it follows that the series

1 −
∞∑

k=1

|λ|k ‖xk‖ , 1 +
∞∑

m=1

|λ|m
∑

p1+···+pr=m

r∏
i=1

‖xpi
‖

are convergent for small λ (see Remark 1 and [11, p. 210]). One can readily see that the last series
dominates the series 1 +

∑∞
m=1 |λ|m

∥∥∥∑
p1+···+pr=m

∏r

i=1

(
−x[m−p1−···−pi]

pi

)∥∥∥; therefore, y ∈ C̃F [λ].

2. Let x0 be an arbitrary invertible function. If uk = δk0x0, vm = x−1
0 xm, u

.=
∑

k λkuk, and
v

.=
∑

m λmvm, then u ∗ v =
∑

n λn
∑

k+m=n δk0x0v
[k]
m =

∑
n λnx0vn = x; consequently, y = x−1 =

v−1 ∗ u−1. In this case, the inverse series u−1 and v−1 exist and belong to the algebra C̃F [λ] (this
is obvious for the first series; the second series satisfies the condition v0 = 1, and therefore, the
assumptions of item 1 are valid for it); consequently, y ∈ C̃F [λ].

Assertion 2. Let Q ∈ ˜CBV[λ]. The operator Q : C[λ] → C[λ] given by the formula (Q x)(t) .=∫ t

α
(dQ ∗ x) is a mapping of C̃[λ] into C̃[λ].

Indeed, if x ∈ C̃[λ], then we have the chains of inequalities
∣∣∣∣∣

∑
k+m=n

t∫

α

(
dQk · x[k]

m

)∣∣∣∣∣ ≤
∑

k+m=n

∣∣∣∣∣
t∫

α

(
dQk · x[k]

m

)∣∣∣∣∣ ≤
∑

k+m=n

Var
D

Qk ·
∥∥x[k]

m

∥∥

≤
∑

k+m=n

‖Qk‖BV ‖xm‖ ,

∑
n

|λ|n
∥∥∥∥∥

∑
k+m=n

t∫

α

(
dQk · x[k]

m

)∥∥∥∥∥ ≤
∑

n

|λ|n
∑

k+m=n

‖Qk‖BV ‖xm‖

=

(∑
k

|λ|k ‖Qk‖BV

)(∑
m

|λ|m ‖xm‖
)

for all t ∈ D. This is a product of convergent series (for small λ); therefore, Q x ∈ C̃[λ].
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Theorem 5. Let Q ∈ ˜CBV[λ], Q0 = const, and f ∈ C̃[λ] in Eq. (2). If x is a solution of this
equation, then x ∈ C̃[λ].

Proof. Since Q0 = const, it follows from (6) that

‖x0‖ = ‖f0‖ , ‖x1‖ ≤ ‖f1‖ + Var Q1 · ‖x0‖ = ‖f1‖ + Var Q1 · ‖f0‖ .

Let n > 1. Suppose that

‖xm‖ ≤
m∑

p=0

am−p ‖fp‖ (10)

for all m < n, where a0
.= 1, aq

.=
∑

p1+···+pr=q

∏r

i=1 Var Qpi
, q ∈ N, and let us prove the esti-

mate (10) for m = n. By (6) and (10), we have the chain of inequalities

‖xn‖ ≤ ‖fn‖ +
n∑

k=1

Var Qk · ‖xn−k‖ ≤ ‖fn‖ +
n∑

k=1

Var Qk

n−k∑
p=0

an−k−p ‖fp‖

= ‖fn‖ +
n−1∑
p=0

cp ‖fp‖ ,

where cn−1
.= Var Q1 · a0 = a1, and for p = 0, . . . , n − 2, we have

cp
.=

n−p∑
k=1

Var Qk · an−p−k = Var Qn−p +
n−p−1∑

k=1

∑
p1+···+pr=n−p−k

Var Qk ·
r∏

i=1

Var Qpi

= Var Qn−p +
∑

k+p1+···+pr=n−p
k<n−p

Var Qk ·
r∏

i=1

Var Qpi
.

Here double summation have been replaced by joint summation with respect to all variables. By re-
placing the indices as ν1 = k, ν2 = p1, . . . , νr+1 = pr and then q = r + 1, j = i + 1, we obtain the
relation

cp = Var Qn−p +
∑

ν1+···+νr+1=n−p
ν1<n−p

r∏
i=0

Var Qνi+1

= Var Qn−p +
∑

ν1+···+νq=n−p
ν1<n−p

q∏
j=1

Var Qνj
= an−p.

Therefore, the estimate (10) remains valid for m = n; consequently,

∑
n

|λ|n ‖xn‖ ≤
∑

n

|λ|n
n∑

k=0

an−k ‖fk‖ =

(∑
m

|λ|mam

)(∑
k

|λ|k ‖fk‖
)

=

(
1 −

∞∑
k=1

|λ|k Var Qk

)−1 (∑
k

|λ|k ‖fk‖
)

< ∞

for small λ. The last equation is valid by virtue of Remark 1. The convergence of the second series
in the last product takes place by virtue of the inclusion f ∈ C̃[λ], and the convergence of the first
series follows from the inclusion Q ∈ ˜CBV[λ] (since

∑∞
k=1 |λ|k Var Qk ≤

∑∞
k=1 |λ|k ‖Qk‖BV < ∞)

and from the convergence of the inverse series for small λ [11, p. 210].
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Remark 5. For Eq. (1), whose generalization is given by Eq. (2) with the kernel Q such that
Qk(·) = δk1q(·), the inclusion f ∈ C̃[λ] in (2) necessarily implies that x ∈ C̃[λ].

Remark 6. Let Q ∈ ˜CBV[λ]. Since C(t, τ) = X(t) ∗ Y (τ), X ∈ C̃(D)[λ], and, by Assertion 1,
Y ∈ C̃(D)[λ], we have C(t, τ) ∈ C̃ (D2) [λ]. Moreover, the inclusion C(·, τ) ∈ ˜CBV[λ] is valid for a
given τ ∈ D. Indeed, by (9), we have

Var Cn(· , τ) ≤
n∑

k=1

Var Qk ·
∥∥Cn−k

(
·, F [k](τ)

)∥∥ ≤
n∑

k=1

Var Qk · ‖Cn−k‖

=
n∑

k=0

Var Qk · ‖Cn−k‖

for n ∈ N. The estimate remains valid for n = 0; consequently, for small λ, we have the chain of
inequalities ∑

n

|λ|n Var Cn(·, τ) ≤
∑

n

|λ|n
n∑

k=0

Var Qk · ‖Cn−k‖

=

(∑
k

|λ|k Var Qk

)(∑
m

|λ|m ‖Cm‖
)

< ∞,

and since ‖Cn(·, τ)‖BV ≤ ‖Cn‖ + Var Cn(·, τ), it follows that
∑

n |λ|n ‖Cn(·, τ)‖BV < ∞; conse-
quently, C(·, τ) ∈ ˜CBV[λ]. By the example in Remark 4, there exist deviations F : D → D such
that, for fixed t ∈ D, the sections Cn(t, ·) are of unbounded variation. Our aim is to describe the
class of kernels Q for which Cn(t, ·) ∈ CBV(D) for all n ∈ N and t ∈ D and consequently, the rep-
resentation (13) is valid for solutions of F -integral equations.

7. ADDITIONAL ASSERTIONS ABOUT F -INTEGRALS

In the preceding sections, we have considered a kernel Q of Eq. (2) such that Qk ∈ CBV .=
CBV(D), i.e., all Qk are continuous functions of bounded variation. We fix a continuous function
F : D → D, and by CBF .= CBF(D) we denote the subspace of CBV consisting of x : D → R

such that x[k] = x
(
F [k](·)

)
∈ CBV for all k = 0, 1, . . . One can readily show that CBF = CBV for

any continuous piecewise monotone function F : D → D. (A continuous function z : [a, b] → R is
said to be piecewise monotone if there exists a partition a = τ0 < τ1 < · · · < τn = b such that the
restriction z : [τk−1, τk] → R is a monotone function for all k = 1, . . . , n.)

Lemma 4. If u, u(F (·)) ∈ CBV, v ∈ C, and [α, β] ⊆ D, then

F (β)∫

F (α)

(du · v) =

β∫

α

(du(F (·)) · v(F (·))) and

F (β)∫

F (α)

(u · dv) =

β∫

α

(u(F (·)) · dv(F (·))).

These formulas are called the change of variables formulas for the Riemann–Stieltjes integral,
and their proof can be performed in a standard way on the basis of the comparison of integral
sums.

Lemma 5. If u ∈ CBF, v ∈ C, α ∈ D, and w(t) .=
∫ t

α
(du · v), then w ∈ CBF.

Proof. The inclusion w ∈ CBV is well known [10, p. 216]. Without loss of generality, we assume
that α < t. For any k ∈ N, we have the inclusion

u[k] = u
(
F [k](·)

)
∈ CBV;
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consequently, by Lemma 4, we have the chain of relations

n∑
m=1

∣∣w (
F [k] (sm)

)
− w

(
F [k] (sm−1)

)∣∣ =
n∑

m=1

∣∣∣∣∣∣∣

F [k](sm)∫

F [k](sm−1)

(du · v)

∣∣∣∣∣∣∣

=
n∑

m=1

∣∣∣∣∣∣
sm∫

sm−1

(
du[k] · v[k]

)
∣∣∣∣∣∣ ≤ Var

D
u[k] · ‖v‖

for an arbitrary partition α = s0 < s1 < · · · < sn = t.

Lemma 6. Let u, v,w ∈ C[λ] and α, β ∈ D. Then the following assertions are valid.

1. If un ∈ CBV for all n = 0, 1, . . . , then
∫ β

α

(
d

∫ t

α
(du ∗ v) ∗ w(t)

)
=

∫ β

α
(du ∗ (v ∗ w)).

2. If vn ∈ CBF for all n = 0, 1, . . . , then
∫ β

α

(
u(t) ∗ d

∫ t

α
(dv ∗ w)

)
=

∫ β

α

(
d

∫ t

α
(u ∗ dv) ∗ w(t)

)
.

3. If wn ∈ CBF for all n = 0, 1, . . . , then
∫ β

α

(
u(t) ∗ d

∫ t

α
(v ∗ dw)

)
=

∫ β

α
((u ∗ v) ∗ dw).

Proof. By Lemma 5, all F -integrals exist. We prove only the third formula, and the proof of
the first two ones can be performed in a symmetric way. The expressions

∫ t

α
(v ∗ dw) and u ∗ v

are equal to
∑

i λi
∑

m+n=i

∫ t

α

(
vm · dw[m]

n

)
and

∑
i λi

∑
k+m=i ukv

[k]
m , respectively; consequently, by

virtue of the second formula in Lemma 4, we have the chain of relations

β∫

α

⎛
⎝u(t) ∗ d

t∫

α

(v ∗ dw)

⎞
⎠

=
∑

j

λj
∑

k+i=j

β∫

α

⎛
⎜⎝uk(t) · d

∑
m+n=i

⎡
⎢⎣

F [k](t)∫

F [k](α)

(
vm · dw[m]

n

)
+

F [k](α)∫

α

(
vm · dw[m]

n

)
⎤
⎥⎦
⎞
⎟⎠

=
∑

j

λj
∑

k+m+n=j

β∫

α

⎛
⎝uk(t) · d

t∫

α

(
v[k]

m · dw[k+m]
n

)
⎞
⎠

=
∑

j

λj
∑

k+m+n=j

β∫

α

(
ukv

[k]
m · dw[k+m]

n

)
=

∑
j

λj
∑

i+n=j

β∫

α

( ∑
k+m=i

ukv
[k]
m · dw[i]

n

)

=

β∫

α

((u ∗ v) ∗ dw).

8. THE ADJOINT F -INTEGRAL EQUATION

Let Qk ∈ CBF for all k ∈ N and Q0 = const in Eq. (2). If C(t, τ) is the Cauchy series of this
equation, then Theorem 4, as well as Theorem 6 below, is valid. Anticipating its proof, we justify
the relations

β∫

α

(dX ∗ Y ) =

β∫

α

dQ,

β∫

α

(X ∗ dY ) = −
β∫

α

dQ, (11)

where α, β ∈ D; moreover, Xn, Yn ∈ CBF for all n = 0, 1, . . . Recall that X(t) is a solution of the
equation X(t) −

∫ t

α
(dQ ∗ X) = e, Y (t) = X−1(t), and X(t) ∗ Y (τ) = C(t, τ). Therefore, by virtue
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of (6) and Lemma 5, the inclusions Qk ∈ CBF imply that Xn ∈ CBF; moreover, X0 = 1, and the
inclusion Yn ∈ CBF follows from the relation X0Yn +

∑n

k=1 XkY
[k]

n−k = δn0 occurring in the proof of
Lemma 1. By virtue of the first formula in Lemma 6, we have the chain of relations

β∫

α

(dX ∗ Y ) =

β∫

α

⎛
⎝d

s∫

α

(dQ ∗ X) ∗ Y (s)

⎞
⎠ =

β∫

α

(dQ ∗ (X ∗ Y )) =

β∫

α

dQ,

and the second formula (11) follows from (5) and the identity X(t) ∗ Y (t) = e.

Theorem 6. If the kernel Q in Eq. (2) satisfies the conditions Qk ∈ CBF for all k ∈ N and
Q0 = const, then the Cauchy series satisfies the identity C(t, τ) −

∫ t

τ
(C(t, s) ∗ dQ(s)) = e.

Proof. By virtue of (11) and the third formula in Lemma 6, we have

t∫

τ

(C(t, s) ∗ dQ(s)) =

t∫

τ

⎛
⎝C(t, s) ∗ ds

s∫

τ

dQ

⎞
⎠ = −

t∫

τ

⎛
⎝C(t, s) ∗ ds

s∫

τ

(X ∗ dY )

⎞
⎠

= −
t∫

τ

((C(t, s) ∗ X(s)) ∗ dY (s)) = −
t∫

τ

(X(t) ∗ dY (s))

= −X(t) ∗ Y (t) + X(t) ∗ Y (τ) = −e + C(t, τ).

Remark 7. By (8), we have C(α, τ) = Y (τ); therefore, if t in the identity in Theorem 6 is
replaced by α, then we obtain the identity Y (τ) +

∫ τ

α
(Y ∗ dQ) = e. Therefore, one can claim that

if Qk ∈ CBF, then the equations

x(t) −
t∫

α

(dQ ∗ x) = f(t), y(τ) +

τ∫

α

(y ∗ dQ) = g(τ) (12)

are adjoint or form a pair of adjoint problems (here f, g ∈ C[λ]). In favor of this terminology,
we provide the following reasoning. By repeating the considerations in Section 4 for the second
equation (12) with F (ξ) = ξ and Qk(t) = δk1q(t) [see system (7)], we find that the pair (12)
corresponds to the equations x̃(t)−λ

∫ t

α
dq · x̃ = f̃(t) and ỹ(τ)+λ

∫ τ

α
ỹ dq = g̃(τ); and if, in addition,

q, f̃ , and g̃ are differentiable functions, then we obtain the ordinary differential equations

˙̃x(t) − λq̇(t)x̃(t) = ˙̃
f(t), ˙̃y(τ) + λỹ(τ)q̇(τ) = ˙̃g(τ)

with the adjoint operators (one can readily see that similar considerations are valid in the matrix
case as well).

9. REPRESENTATION OF SOLUTIONS
OF ADJOINT F -INTEGRAL EQUATIONS

Theorem 7. If the kernel Q in Eq. (12) satisfies the conditions Qk ∈ CBF, k ∈ N, and
Q0 = const, then the (unique) solution of the first equation with α = F (α) can be represented
in the form

x(t) = f(t) −
t∫

α

(dsC(t, s) ∗ f(s)) or x(t) = C(t, α) ∗ f(α) +

t∫

α

(C(t, s) ∗ df(s)), (13)
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and the (unique) solution of the second equation can be represented as

y(τ) = g(τ) −
τ∫

α

(g(s) ∗ dsC(s, τ)) or y(τ) = g(α) ∗ C(α, τ) +

τ∫

α

(dg(s) ∗ C(s, τ)) (14)

for any α ∈ D; the F -multiplication in the second formulas in (13) and (14) is performed in the
algebra CF (D2) [λ].

Proof. By Theorem 6, we have the infinite system of relations

C0(t, τ) = 1, Cn(t, τ) =
n∑

m=1

t∫

τ

(
Cn−m(t, s) · dQm

(
F [n−m](s)

))
, n ∈ N;

therefore, for a fixed t ∈ D, the coefficients Cn(t, ·) are of bounded variation; consequently, the
F -integrals occurring in (13) exist. The existence of the F -integrals occurring in (14) is justified
by Remark 4. The existence and uniqueness of the solution of the first equation in (12) have been
discussed in comments to system (6), and the existence and uniqueness of the solution of the second
equation (12) take place by virtue of a similar argument.

Let us prove the first formula in (14) [the second one follows from it in view of (5)]. By sub-
stituting the right-hand side of this formula into the F -integral in the second equation in (12),
we obtain the relation

∫ τ

α
(y ∗ dQ) =

∫ τ

α
(g ∗ dQ) + σ, where

σ
.= −

τ∫

α

⎛
⎝

s∫

α

(g(ξ) ∗ dξC(ξ, s)) ∗ dQ(s)

⎞
⎠ = −

τ∫

α

⎛
⎝

s∫

α

(g ∗ dX) ∗ Y (s) ∗ dQ(s)

⎞
⎠ .

We have used the relation
∫

E
(u(s) ∗ ds(v(s) ∗ w(τ))) =

∫
E
(u∗dv)∗w(τ), which is valid by Lemma 3

and formula (5). The third formula in Lemma 6, together with Remark 7, implies that

σ = −
τ∫

α

⎛
⎝

s∫

α

(g ∗ dX) ∗ d

s∫

α

(Y ∗ dQ)

⎞
⎠ =

τ∫

α

⎛
⎝

s∫

α

(g ∗ dX) ∗ dY (s)

⎞
⎠ .

By the first formula in (11), the second formula in Lemma 6, and (5), we have the chain of relations

τ∫

α

(g ∗ dQ) =

τ∫

α

⎛
⎝g(s) ∗ d

s∫

α

(dX ∗ Y )

⎞
⎠ =

τ∫

α

⎛
⎝d

s∫

α

(g ∗ dX) ∗ Y (s)

⎞
⎠ ,

τ∫

α

(y ∗ dQ) =

s∫

α

(g ∗ dX) ∗ Y (s)

∣∣∣∣∣∣
τ

α

=

τ∫

α

(g ∗ dX) ∗ Y (τ)

=

τ∫

α

(g(s) ∗ dsC(s, τ)) = g(τ) − y(τ).

Anticipating the proof of formulas (13), we justify the relation

t∫

α

(dsC(t, s) ∗ f(s)) = X(t) ∗
t∫

α

(dY ∗ f). (15)
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By Remark 2, a series independent of the integration variable and written on the left cannot in
general be transferred outside the F -integral; however, under the assumptions of the theorem,
we have the chain of relations

t∫

α

(dsC(t, s) ∗ f(s)) =
∑

j

λj
∑

i+n=j

t∫

α

(
dsCi(t, s) · f [i]

n (s)
)

=
∑

j

λj
∑

i+n=j

t∫

α

(
ds

∑
k+m=i

Xk(t)Y [k]
m (s) · f [i]

n (s)

)

=
∑

j

λj
∑

k+m+n=j

Xk(t)

t∫

α

(
dY [k]

m · f [k+m]
n

)
.

By Lemma 4, the condition α = F (α), and the relation
∫ t

α
(dY ∗f) =

∑
i λi

∑
m+n=i

∫ t

α

(
dYm · f [m]

n

)
,

we have
t∫

α

(dsC(t, s) ∗ f(s)) =
∑

j

λj
∑

k+m+n=j

Xk(t)

F [k](t)∫

F [k](α)

(
dYm · f [m]

n

)

=
∑

j

λj
∑

k+i=j

Xk(t)
∑

m+n=i

F [k](t)∫

α

(
dYm · f [m]

n

)
= X(t) ∗

t∫

α

(dY ∗ f).

By substituting the right-hand side of the first formula in (13) into the F -integral in the first
equation in (12), we obtain

∫ t

α
(dQ ∗ x) =

∫ t

α
(dQ ∗ f) + σ, where

σ
.= −

t∫

α

⎛
⎝dQ(s) ∗

s∫

α

(dξC(s, ξ) ∗ f(ξ))

⎞
⎠ = −

t∫

α

⎛
⎝dQ(s) ∗ X(s) ∗

s∫

α

(dY ∗ f).

⎞
⎠

[We have used formula (15).] It follows from the first formula in Lemma 6 that

σ = −
t∫

α

⎛
⎝d

s∫

α

(dQ ∗ X) ∗
s∫

α

(dY ∗ f)

⎞
⎠ = −

t∫

α

⎛
⎝dX(s) ∗

s∫

α

(dY ∗ f)

⎞
⎠ .

By the second formula in (11), the second formula in Lemma (6), and relation (5), we have the
chain of relations

t∫

α

(dQ ∗ f) = −
t∫

α

⎛
⎝d

s∫

α

(X ∗ dY ) ∗ f(s)

⎞
⎠ = −

t∫

α

⎛
⎝X(s) ∗ d

s∫

α

(dY ∗ f)

⎞
⎠ ,

t∫

α

(dQ ∗ x) = −X(s) ∗
s∫

α

(dY ∗ f)

∣∣∣∣∣
t

α

= −X(t) ∗
t∫

α

(dY ∗ f) = −
t∫

α

(dsC(t, s) ∗ f(s)) .

The penultimate relation is valid by virtue of the condition α = F (α), and the last relation holds
by virtue of (15). Therefore,

∫ t

α
(dQ ∗x) = x(t)− f(t). The second formula in (13) is a consequence

of the first one.
Summarizing, we note that the schemes of the classical theory of linear differential equations

can be transferred to Eq. (2) in full extent. The variable λ plays the role of a spectral parameter
in our constructions.
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