
Astron. Astrophys. 79,35-39 (1979) ASTRONOMY
AND

ASTROPHYSICS

On the Limiting Ellipticity of Galaxies Formed by Dissipationless Collapse

L. M. Ozernoy and B. P. Kondrat'ev

P. N. Lebedev Physical Institute, Leninskij prospect 53, Moscow 117924, USSR

Received October 30, revised December 28, 1978

Summary. Using the model of a homogeneous oblate spheroid
that has a global anisotropy of velocity dispersion we show that
the limiting ellipticity of a galaxy formed by dissipationless
collapse is equal to em a x = 0.8321. This is considerably greater
than the analogous value e m a z = 0.7091 obtained by Thuan and
Gott (1975) who used the model of a homogeneous spheroid
with isotropic "pressure". However, neither of these models
proves that the real galaxies were formed in the course of
dissipationless collapse, due to the fact that both models are
inadequate to explain the small rotation of elliptical galaxies.

Maclaurin spheroid, i.e. it has an isotropic velocity dispersion.
Moreover, a spheroid with such an isotropic "pressure" cannot
serve as a model of elliptical galaxies since their flattening, as it
is known at present, is too large to be explained by rotation and
is conditioned by a global velocity anisotropy (Binney, 1976).
We shall see below that the limiting ellipticity reaches a greater
'value, е ш а х = 0.8321, in a more general case of an equilibrium
homogeneous spheroid having a global anisotropy in the
velocity dispersion.
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1. Introduction

During recent years a hypothesis has been rather widely spread
that elliptical galaxies were formed as a result of dissipationless
collapse of progalactic perturbations, whereas the formation of
lenticular and spiral galaxies was accompanied by appreciable
dissipation of energy. This belief became plausible after Thuan
and Gott (1975) showed, using as a model the homogeneous
Maclaurin spheroid,1 that an initially spherical protogalaxy
consisting only of stars does relax in the course of dissipation-
less collapse to an equilibrium configuration, the ellipticity
(e = 1 - c/e) of which does not exceed a value e m a x = 0.70905,
resembling the maximum flattening of elliptical galaxies of the
type E7. However, as will be shown in this paper, the value
em»x depends appreciably on the assumption adopted by Thuan
and Gott that the resulting equilibrium configuration is the

To consider the case of a global anisotropy in the velocity
dispersion we shall restrict ourselves to the homogeneous model
of an oblate spheroid of the density p0 consisting of stars with
equal masses. The anisotropic distribution function /(r, v),
depending on the three integrals of motion, obeys an equation
(Polyatshenko and Fridman, 1976):

/(/и, n, Tz)dmdndTz

Send offprint requests to: L. M. Ozernoy
1 Strictly speaking, the model by Thuan and Gott differs
from the classical Maclaurin spheroid in respect that they take
for equilibrium state Eeq = iWeq, whereas for the Maclaurin
spheroid Eeq = Weq(\ - 0eg). Here, E is the total energy, W is
the gravitational energy, в is the ratio of rotational energy
Ent to | W| and changes from 0 to i when the ellipticity e changes
from 0 to 1. However, the ratio £^ /1Щ being a function of e
is the same for both the models. Therefore, for the sake of
brevity, we shall use in what follows the term "Maclaurin
spheroid" for the spheroid with isotropic pressure considered
by Thuan and Gott.

(1)

Here, a and с are the semi-major and semi-minor axes of the
spheroid;

A2 =
(1 - e 2 ) 1 ' 2 1 - e2

r-i— arcsin e =—
• ) •

- Г1 - e2W2 arcsin e
) •

are coefficients in the expression for the gravitational potential
9> = const + iA2r2 + iC2z2 in a cylindrical coordinate
system; e is an eccentricity; m and n describe the geometry of
star orbits; Tz is the z-component of the integral of energy
T = (t>2/2) + <p{r, z);rj(x) = Oat x < Oandij(*) = 1 a t * £ 0.

It can be shown that for the stationary spheroid the solution
of Eq. (1) is

Km, n, П = %$ (2)

where §[...] is the S-function. The components of velocity
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dispersion obtained with the help of (2) in the Appendix are
(bar means an averaging over the velocity space):

4 \ а2 с 2 /

(3)

The transversal component of the velocity dispersion contains a
term

(4)
2 L* 2 \ e-

and square of the rotational velocity

*• = ^T (1-*2/с2)1/2£{|; [(l-r2/a2-z2/c2)/(l-z2/C
2)J1'2}

(5).

where £(...) is the complete elliptic integral of the second kind.
The rotation of the spheroid, being differential, depends both
on r and z; at the given r the rotational velocity increases to the
plane z = 0. The angular velocity increases from the centre to
the boundary where it reaches a constant (not depending on
both r and z) value w = lAj-я. The boundary surface rotates as
a hard egg-shell; all the motions on the boundary disturbing
its hardness are absent. As is seen from (3), both v? and v%
decrease from the centre to the boundary of the spheroid, being
constant on surfaces (r2/a2) + (z2/c2) = a. (a g 1), and when
a = 1 (the boundary) they come to zero. Note that the uniform
rotation of the boundary surface does not mean that it consists
of the same stars; in fact, star orbits only touch this boundary,
and the condition of such a contact is a reason for the presence
of the S-function in (2)^

Averaging (3) and v% over the spheroid's volume we get the
components of the energy of chaotic motions as well as the
rotational energy. The latter may be presented in the form

1 (1 - g a) 1 ) a\
e 2 e-arcsrae/ '

(6)
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and £^»na/| W\ as functions of ellipticity e =

The energy of chaotic motions, Enna, and that of rotation,
Em, divided to the modulus of gravitational energy \W\, are
shown in Fig. 1 as a function of the ellipticity e of the spheroid.
At ellipticities 0 g £ g 0.7 an inequality £•,.„„ > £rot holds,
and at e > 0.7 the opposite inequality takes place. It is
interesting that at e = 0 the rotational energy differs from zero,
and this fact demonstrates clearly the specific properties of a
homogeneous spheroid with anisotropic pressure. Recall that
the rotational energy comes to zero at e = 0 for both liquid
figures of equilibrium and collisionless star systems with
isotropic pressure; the rotational velocities are non-zero at
e = 0 only in the curious case of a sphere, the top and bottom
halfs of which rotate in opposite directions (Lynden-Bell, 1960),
whereas the total angular momentum of the sphere is zero.

As can be seen from Fig. 1, in the model considered 0.2 g
EnJ\W\ Ш 0.3, i.e. the stability condition ErJ\W\ < 0.14
suggested by Ostriker and Peebles (1973), is not fulfilled. There-
fore this model is unstable to a bar formation unless a spherical
component, in addition to a flat one, is present; lenticular and
many spiral galaxies contain, as it is well known, such a com-
ponent. The presence of a centrally-condensed bulge prevents the
bar formation as well (Berman and Mark, 1978). This is the
reason why we do not believe that the violation of the stability
condition for the very simplified (homogeneous!) model
considered here is its serious defect.

3. Limiting Ellipticity of a Homogeneous Spheroid with Aniso-
tropic Pressure

To obtain the limiting ellipticity of a homogeneous spheroid
with a global anisotropy in the velocity dispersion we assume,
after Thuan and Gott (1975), that the spheroid was formed in
the course of dissipationless collapse from a spherical homogen-
eous protogalaxy with initial radius at and angular velocity of
uniform rotation wt (initial random velocities are assumed to be
absent).

The absence of any dissipation in the course of collapse does
mean, firstly, that the total energy in the initial state

= Щ1 - # . ) = - (7)

where 9, = (ETot/\ W\), is the initial ratio of rotational and
potential energies, is equal to the total energy of the resulting
equilibrium spheroid

»7 _ 1 и^ _ ^ M a G arcsin e
£*, -2^«" -Io"^~r~-
In other words,

_ д. _ 1 arcsin e ^
2 e a,,'

(8)

(9)

Secondly, the angular momentum of a protogalaxy is conserved,
i.e.

= а2,-о)ея,

where

5

2Л

(10)

(11)
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Fig. 2. e,, as a function of ft for spheroids with isotropic
"pressure" (dashed line, after Thuan and Gott, 1975) and with
anisotropy of velocity dispersion (solid line)

is the angular velocity of the equilibrium spheroid averaged
over its volume.

The value a>e,/co, may be found using the ratio

£rote» = а%-ш% _ П _ (l - fry'xarcsin e i_j±
Еюы of-caf ' \e2 earcs ine/ e ftae«'

where

ей = (13)

Eliminating со, in (12) with the help of (10), and aejat with the
help of (9), we get

- ft) = 0,1362(- (14)

The solution of Eq. (14) relative to e = 1 - (1 - e2)1 '2 is
shown in Fig. 2 together with the solution of the corresponding
Eq. (7) in Thuan and Gott (1975) which differs from (14) by the
right hand side.

There are no equilibrium oblate spheroids with anisotropic
velocity dispersion formed from protogalaxies having ft <
0.1010 or ft > 0.8990. These limiting values of ft correspond to
«e, = 0. When ft increases starting from 0.1, the equilibrium

"ellipticity eeq increases as well, and at ft = 1/2 it reaches a
maximum value e m a x after which е„ decreases again and turns
into zero at ft s 0.8990.

The physical reason for the existence of the maximum
ellipticity for an equilibrium homogeneous spheroid (irrespec-
tive of whether its pressure is isotropic or anisotropic) is as
follows. At fixed M, at ,and the character of initial rotation, the
value ft = (.Erot/1 W|)t determines both the angular momentum
/i and the total energy Et of a protogalaxy. Then the ellipticity
of a spheroid in its equilibrium state, eM = 1 - c,q/aeq, is
determined by the conserved values of /j and Et. The semi-axes
aejat and ctq/cit normalized to their initial values, depend on
6t in different manners: the change of aejat with ft is determined

by conservation of both the angular momentum and the
energy, whereas the change of c,4/c, with ft is determined only
by conservation of the total energy. As a result, г„, as a function
of ft has a maximum at some value of ft.

As for the maximum ellipticity for the homogeneous
spheroid with anisotropic pressure, we have the following

^picture. At the minimum value of ft = 0.1010, one obtains
aejai = ce9/Ci = 0.56, e«, = 0, and the density of the equilib-
rium sphere has the maximum value. With the increasing of ft
in the range 0.1010 й ft ^ 1/2 the value of aeqjai is increased
(from 0.56 up to 1.42), and ceqld is decreased to the minimum
value (0.24 at ft = 0.42), after which it begins to increase. As a
result, the value of eeq is increased from zero up to етлх = 0.8321
which is reached at ft = 1/2. This value is the maximum
ellipticity because at ft > 1/2 the ellipticity decreases since the
ratio сея/сг increases much faster than а,ч\щ due to the fact that
•Eron ~ <"? whereas J, ~ co(.

It is very interesting that the maximum ellipticity, е г а а х =
0.8321, of the equilibrium homogeneous spheroids with
anisotropic gressure is appreciably greater than the correspond-
ing value, ещГх = 0.7091, obtained by Thuan and Gott (1975)
for the Maclaurin spheroids.

4. Discussion

Is there any correspondence between the considered model of a
homogeneous spheroid with anisotropic pressure and properties
of galaxies?

Using observed amplitudes of both galaxy rotational
velocities vTO-i and rms chaotic velocity a, it is possible to
evaluate a ratio of energies for rotational and chaotic motions
£rot/£rand ~ (vrotlo)2. For elliptical galaxies this ratio is small
enough being about 0.1-0.2 (Illingworth, 1977). As for the
model considered, the ratio

Erot (15)

Note that due to a non-uniform rotation in the final state
aiq/af.

ranges between.2/3 for e = 0 (a sphere) and 3/2 for г = 1 (a
disk). Therefore this model does not apply at any e to elliptical
galaxies.

At the same time, the dynamical properties of this model
resemble rather well some properties of lenticular galaxies. For
example, for NGC 128 the ratio (vrot/o)2 = 1.2 and the
ellipticity (using the most flattened isophotes) em = 0.77
(Bertola and Capaccioli, 1977a); for NGC 4672 we have
(«rot/ff)2 S 1.1 and em = 0.85 (Bertola and Capaccioli, 1977b).
The theory gives [see Eq. (15)] ErJEnni = 1.14 and 1.19 at
E = 0.77 and 0.85, respectively. The agreement between the
theory and observations is rather good. However, the accuracy
of the data available should not be overestimated since errors
in the course of measurements of a are still rather large.
Nevertheless, the similarity of dynamics of SO galaxies with
the dynamics of the model considered, e.g. with the predomin-
ance of rotational velocities upon chaotic ones (Em > Enau)at
ellipticities e > 0.7, is worth attention. It is interesting that the
ellipticity e £ 0.7, at which elliptical galaxies "disappear", is
near the limit of dynamical stability for Maclaurin spheroids
with isotropic pressure. The flattening of flatter systems (SO and
Sa-Sc galaxies) is, on the average, of about e = 0.75 and reaches
a maximum value ея ~ 0.9 (see Freeman, 1975 and references
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therein). It is remarkable that em is near to the theoretical upper
limit em a x = 0.83, which is given about in the framework of the
model of a homogeneous spheroid with anisotropic pressure.

At the same time this model does not reproduce some other
important properties of SO and disk galaxies. For instance, the
rotational velocity (5) in the plane z = 0 increases monoton-
ously and reaches its maximum value at the boundary surface. -
Such a behaviour of va differs qualitatively from the typical
rotational curve of galaxies which after its maximum is flat or
declines.

This discrepancy between the model and the. properties of
real galaxies is due to the simplified assumption of homogeneity
of the spheroid. Unfortunately, investigation of non-homogen-
eous models is rather difficult. However, it is possible to reach
some qualitative conclusions. Obviously, concentration of
mass to the centre of the spheroid makes the change of vv with
the distance from the rotational axis nonmonotonous. At the
same time, the account for non-homogeneous density distribu-
tion does not diminish, as compared with Eq. (15), the ratio
ErotlEra.nu for the models where the distribution function
f{r, v) depends on two integrals of motion (Л, Е) and the
density is constant on spheroidal surfaces. Therefore, a non-
homogeneous spheroid with anisotropic pressure may be an
attractive model for SO and S-galaxies and deserves further
investigation.

As was mentioned above, the homogeneous model at any e
(including s < 0.7) has too large a ratio ЕгоЬ/Етлвй to be applied
to elliptical galaxies. It is possible to diminish the ratio Ent/
•Erana only by means of global anisotropy in velocity dispersion
such that

< i >2

However, it can be shown that, in the model considered, such an
inequality is fulfilled only at e > 0.63. Hence, elliptical galaxies
of all types (E0-E7) cannot be described by means of the
homogeneous model investigated in the present paper. This is
not surprising since the anisotropy given by Eqs. (3) is a special
(and not the most general) case of anisotropy and is related to
the assumption of homogeneity. Therefore, it would be prema-
ture to entirely reject the oblate spheroids as possible models for
elliptical galaxies, because a spheroid with other kind of
anisotropic pressure [such as the one given by Eq. (16)] may
serve as a basis for an appropriate model. Indeed, there is
observational evidence that some elliptical galaxies possibly are
oblate spheroids (Kondrat'ev and Ozernoy, 1979). It is tempting
to speculate that a non-homogeneous model of the spheroid
with anisotropic pressure can provide the anisotropy in
velocity dispersion possessing such a property as (16). Ap-
parently, the distribution function f(r, v) for a non-homogen-
eous spheroid with anisotropy (16) will depend, besides Jx and
E, also on the third integral of motion, which is unknown, as
distinct from the case of homogeneous spheroid [see Eq. (2)].
If it is so, then the non-homogeneous spheroid with anisotropy
of the velocity dispersion might serve as an attractive model for
both SO and E-galaxies.

5. Conclusions

The main result of this paper is that the maximum ellipticity for
a homogeneous spheroid, with anisotropic velocity dispersion

formed as a result of dissipationless collapse of a rotating
sphere, is equal to e m i x =0.8321. This shows that the value
«max = 0.7091 obtained by Thuan and Gott (1975), for a
homogeneous spheroid with isotropic pressure, reflects the
specific properties of the model adopted not to mention that
the Maclaurin spheroid cannot serve as a model for elliptical
galaxies owing to their small rotation.

The value £max = 0.83 obtained above resembles the
maximum ellipticity for lenticular and spiral galaxies. Possibly,
other main properties of these galaxies may be explained, using
the spheroids with anisotropic pressure, if we consider non-
homogeneous models. At the same time, it is scarcely possible
to consider the formation of both spheroidal and disk com-
ponents of SO and S-galaxies as a result of dissipationless
collapse. There is a number of well-known arguments which
show that the formation of the disk component was accompan-
ied by some dissipation of energy. If the formation of systems of
galaxies (groups, clusters, etc.) took place by clustering of
galaxies, the preservation of their individualities can give useful
restrictions to the amount of energy dissipated (White, 1978).
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Appendix: Components of Velocity Dispersion in a Homogeneous
Spheroid with Anisotropic "Pressure"

It is readily shown that the trajectory of a star moving in a plane
which is perpendicular to z-axis is an ellipse:

2Гхг
2 -Jt- A2rl = v2r2, (A.I)

where

Г± = (v? + V%)I2 + A2r2/2

and

Jz = r-v9

are the first integrals of motion. Introducing the parameters of
the ellipse m = r£ax and л = г£ш we obtain from (A.I)

v2 = — (т - r

2)(r2 - п). (A.2a)

Further, from both T± and /, one obtains the azimuthal
component of the velocity:

v% = m-n—-. (A.2b)

The z-component of the energy integral, Tz = vljl + C2z2,
yields

vl = 1TZ - C2z2. (A.2c)

By definition

" 2 - 1
V' ~ Po'

(A.3)

To evaluate this integral, it is convenient to introduce new
variables (m, n, Tz) instead of (vx, vy, vz). This transformation
has the Jacobian

A m — n
4 (от-и)1'8

{[27; - С2г2]ш-[(/я - r*)(r2 - и
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and the integral in (A.3) must be taken over the phase volume:

0 g n й Л m s a\\ + 2TJC2c2),

l- CV Tz й \ C2c2(l - r2/a2). (A.4)

Note that the second of formulae (A.4) is nothing but the
condition of touching the spheroid's boundary surface by all
of stars, and this leads to a degeneracy of the distribution
function f(r, v) [See Eq. (2) in the text].

Integrating in (A.3) we obtain the first of Eqs. (3) to be
found. In the same manner, averaging (A.2c) in (3) overjhe
phase volume, we obtain v2. To find a%, we evaluate first v% =
a\ + v*:

Po

2A2a

- 2Гг/СУ)]
_,

J I Km - r-W " я)]1"

and then obtain Eq. (4). Similarly, one gets v%.
To evaluate the components of the energy of chaotic

motions, the components of the velocity dispersion obtained
above must be averaged over the spheroid's volume. For
example,

= 0,10A2a2 (A.5a)

The averaging of the other components yields:

<7b = 0.20CV,

<a£> = 0.06 A2a2.

Finally,

(A.5b)

(A. 5c)

(A.6)

which is shown in Fig. 1.
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