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Canonical Formalism in Problem for Motion of
Incompressible Liquid Gravitational Ellipsoid

B. P. Kondratyev!, V. A. Antonov®

'Udmurt State University, Izhevsk, Russia
2GAO, Saint-Petersburg, Russia

Consider an affine deformation of the ellipsoid. A state of the ellipsoid
at given time characterizes a matrix A

a1 Q12 Q13
A= | an ap a |, (8)
Gz1 a3z azs

which transforms “primary body” into the ellipsoid:
f'(t) = A(t)ﬁ'y (9>

where R is the fixed primary vector, T is the vector, connected with
moving fluid particle. The primary body is the sphere of radius R = Ry

RER = RZ. (10)
From (9) it follows that R = A ~'F. Substitute this relation into (10):
RMR = RZ,
where M = (A*A)”l, s0 that in the principal axes one finds
at? 0 0 a} 0 0
M=| 0 a* 0 |; M?*=| 0 a3 0
0 0 a2 0 0 of
The gravitational energy of the ellipsoid reduces to the form
36U [
W=~ / [det (M~ + sE)] % ds,
0

where 4 is the total mass, and E is the unit matrix. The kinetic energy
reads A
,7Tp k. lj, ke
T=— = —SpA A.
30 SpA A 10Sp A

Besides, there is the compression energy

D =h(detA — k)%,

T4



where A is a certain constant, & is the “standard” volume growth while
the conversion of the sphere into the ellipsoid. Then, we make the Hamil-
tonian

H=T+W+D= £SpA*A-
O -
— 312G [ [det (M) +sE)] "/ ds + h(det A — x)*.
0
The generalized coordinates in this problem a;; are the elements of

the matrix A from (8); the generalized momenta b, are the elements of
the matrix $pA. It is possible to show, that

daik _ _Qg_ = i
dt by — ks
du _OH 1,
dt N Baik - 5“ Gl
where
gy = — 19 (det A — k) (A*) 7' +
s Qo —_
#4958 [ {det (M + oE)) LM+ SE) A, ds.
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The Hertz Contact Problem and Its Application to the
Vehicle Dynamics Computer Simulation

1. I. Kosenko, E. B. Alexandrov

Moscow State University of Service, Moscow Region, Russia

A method of computer implementation of an elastic contact model for
rigid bodies in frame of the Hertz contact problem [1] is considered. An
algorithm to transform the outer surfaces geometric properties to the
local contact coordinates system is analyzed in details [2]. This plays an
important role when applying the object-oriented approach to simulate
the process of contacting. :
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