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A model for diffusion and phase separation which takes into account hyperbolic
relaxation of the solute diffusion flux is developed. Such a ‘hyperbolic model’
provides analysis of ‘hyperbolic evolution’ of patterns in spinodal
decomposition of binary systems. Analytical results for the dispersion relation
and critical parameters (such as wavelength and amplification rate of
decomposition) are analyzed in comparison with outcomes of classic Cahn–
Hilliard theory. It is shown that the hyperbolic model predicts the amplification
rate behaviour that is typically observed in experiments on spinodal
decomposition.

1. Introduction

The phase transformation in which both phases have equivalent symmetry but differ
only in composition is well known as spinodal decomposition. This transformation
has been theoretically described by Cahn an Hilliard [1, 2].

In parallel with a detailed analysis and tests against experimental data [3, 4] the
theory of Cahn and Hilliard has been further explored and developed. In particular,
it has been demonstrated that there is a boundary for the critical quenching above
which the classic Cahn–Hilliard approach has to be extended to the case of strongly
non-equilibrium decomposition provided by deep supercooling into the spinodal
region of a phase diagram [5, 6].

Few advancements were made for strongly non-equilibrium phase separation.
Binder et al. [7] generalized the linearized Cahn–Hilliard theory to the case of the
existence of a slowly relaxing variable. Their calculations show that the instability of
the system is not of the standard diffusive type, but rather it is controlled by the
relaxation of the slow structural variable. Recently, a classic model for spinodal
decomposition has been modified by taking the relaxation of diffusion flux as an
independent thermodynamic variable into consideration [8, 9]. This modification has
been made consistent with extended irreversible thermodynamics [10]. As a result,
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a partial differential equation of hyperbolic type for phase separation with diffusion
has been derived. It can be called ‘a hyperbolic model for spinodal decomposition’.
Therefore, the present article gives a comparative analysis of both the Cahn–Hilliard
parabolic model and the hyperbolic model (modified Cahn–Hilliard) of spinodal
decomposition. As a first test we focus on a comparison of the dispersion relation
in the parabolic and hyperbolic models of decomposition.

2. Hyperbolic spinodal decomposition

Consider an isothermal and isobaric binary system represented as an isotropic solid
solution free from imperfections and with the molar volume independent of concen-
tration of A- and B-atoms. One assumes that a spinodal region is defined by the
negative curvature for the free energy, @2f=@c2 < 0, and the spinodal itself is defined
as @2f=@c2 ¼ 0, where f is the Helmholtz free energy per unit volume and c is the
concentration of B-atoms.

For a given temperature, the free energy f is based on the selected set of
independent thermodynamic variables fc,rc, ~Jg, consisting of the concentration, its
gradient, and solute diffusion flux, respectively. This set represents a union of the
slow conserved variable c and the fast non-conserved variable ~J. An analogous set of
variables is generally analyzed within the context of extended thermodynamics
[10, 11] and it is used for models of fast phase transformations [9]. In such a case,
the free energy density can be written in the following form

fðc,rc, ~JÞ ¼ fhðcÞ þ
"2c
2
ðrcÞ2 þ

�J
2
J2, ð1Þ

where "c ¼ ½ð@
2f=@ðrcÞ2Þrc¼0�

1=2 is the coefficient proportional to correlation length,
�J ¼ ð�D=DÞ½@ð��Þ=@c�T¼const the coefficient specifying non-Fickian diffusion [10],
D the diffusion constant, �� ¼ �A��B the difference of chemical potentials for
components A and B, respectively, and �D is the relaxation time of the diffusion
flux to its steady state. Within the limits of instant relaxation, i.e, �D ! 0, the term
with fluxes vanishes and equation (1) gives the free energy density fðc,rcÞ of Cahn–
Hilliard form applicable for local equilibrium system.

Going beyond local equilibrium requires in-depth reexamination of such basic
concepts as entropy, temperature, pressure or chemical potential under more general
circumstances [10]. The free energy density (1) defines the thermodynamic potential
with both the local equilibrium contribution fh(c) and the purely local non-
equilibrium contribution ð�J=2ÞJ

2 (under spatial inhomogeneity specified by the
gradient term). For the local equilibrium part fh(c) a local ergodicity (that is, the
system needs to sample the phase space) is true. However, as soon as we postulate
diffusion flux with a finite relaxation time, this means that the local non-equilibrium
contribution ð�J=2ÞJ

2 assumes the existence of a slow physical process, which is the
jump of solute atoms [13]. Considering ergodicity of a phase space for non-equili-
brium situation, one may well refer to statistical effects in fast spinodal decomposi-
tion due to the existence of many particles (atoms and molecules) within local
volumes. Since the phase demixing proceeds very fast, the particles do not have
enough time to sample all the phase space. Thus, the number of microstates
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accessible to each of them will be lower than in equilibrium. This will imply an
increase in the free energy with respect to the local equilibrium contribution fh(c).
This is one of the ways to interpret the non-equilibrium contribution ð�J=2ÞJ

2 to the
free energy (1).

Taking equation (1), the total Helmholtz free energy as a free energy functional
is given by

Fðc,rc, ~JÞ ¼

Z
v

fhðcÞ þ
"2c
2
ðrcÞ2 þ

�J
2
J2

" #
dv, ð2Þ

where v is a sub-volume of the system. Evolution of Fðc,rc, ~JÞ with time t is
described by dF=dt ¼ ðdF=dtÞex þ ðdF=dtÞin, where ðdF=dtÞex is the external exchange
of the free energy and ðdF=dtÞin is the internal change of the free energy inside of the
system. The latter is defined as a dissipative function. Using the procedure described
in [8, 9] and applied to equation (2) one can obtain

dF

dt

� �
ex

¼

Z
!

"2cðrncÞ
@c

@t
þ �f 0c þ "

2
cr

2c
� �

Jn

� �
d!, ð3Þ

dF

dt

� �
in

¼

Z
v

~J � r f 0c � "
2
cr

2
nc

� �
þ �J

@ ~J

@t

" #
dv, ð4Þ

where ! is the outer surface of sub-volume v, Jn is the diffusion flux pointed by the
normal vector ~n, and f 0c ¼ @fh=@c. As it follows from equation (4), the dissipative
function includes the term �J@ ~J=@t which has a clear physical meaning: far from
equilibrium, the diffusion flux provides additional ordering that is leading to increase
of dissipation.

Around a steady state, the dissipative function (4) must decrease in time, so that
the free energy of the entire system decreases. This condition implies a relation
between fluxes and forces which, in the simplest case, is assumed to be linear [10].
For equation (4), it gives the following evolution equation for the diffusion flux

~J ¼ �Mr f 0c � "
2
cr

2c
� �

�M�J
@ ~J

@t
, ð5Þ

where M is the atomic mobility, so that �D ¼M�J. Together with the atomic mass
balance

@c

@t
¼ �r � ~J, ð6Þ

equation (5) leads to the following governing equation

�D
@2c

@t2
þ
@c

@t
¼ r �

h
Mr f 0c � "

2
cr

2c
� �i

, ð7Þ

which is the same as previously derived from the entropy functional [8, 9].
Equation (7) is a partial differential equation of hyperbolic type with the decomposi-
tion delay described by the term �D@

2c=@t2.
As we focus on the analysis of the initial stages of decomposition (i.e., when large

concentration gradients exist and short periods of time are important) one may
neglect in equation (7) all terms not linear in c. This yields

�D
@2c

@t2
þ
@c

@t
¼Mf 00ccr

2c�M"2cr
4c, ð8Þ

Spinodal decomposition of a binary system 823
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where f 00cc ¼ @
2fh=@c

2. As �D! 0, equation (8) transforms into the classic
Cahn–Hilliard equation [1, 2]. In the present form, equation (8) can be considered
as a modified Cahn–Hilliard equation which is a linearized partial differential equa-
tion of hyperbolic type. This equation is true for spinodal decomposition with local
non-equilibrium diffusion (diffusion with relaxation of the solute flux). This type of
decomposition is expected for short periods of time, large characteristic velocities of
the process, large concentration gradients, or for deep supercoolings.

3. Dispersion relation

Consider the elementary exponential solution of equation (8) in the following form

cðz, tÞ � c0 ¼ ak exp½iðkz� !ðkÞtÞ�, ð9Þ

where k is the wave-vector and the dispersion relation !(k) is given by

!ðkÞ ¼ �
i

2�D
�

Mk2ð f 00cc þ "
2
ck

2
Þ

�D
�

1

4�2D

 !1=2

: ð10Þ

The upper and lower signs for !(k) in equation (10) correspond to the branches
which are responsible for the wave propagation in the positive and negative
z-directions, respectively.

In the local equilibrium limit �D ! 0, equation (10) gives the following approx-
imation

!ðkÞ � �
i

2�D
1� 1� 2�DMk2

�
f 00cc þ "

2
ck

2
�� �� �
: ð11Þ

Equation (11) shows that one of the roots is going towards �1 along the imaginary
axis following the law !ðkÞ � i=�D. This leads to exponential decay of the solution (9).
The second root of equation (11) is finite and it is equivalent to the well-known
Cahn–Hilliard relation

!ðkÞ � �iMk2ð f 00cc þ "
2
ck

2
Þ: ð12Þ

Thus, the local equilibrium limit for the dispersion relation (10) gives two different
roots: the first root is diverging and the second root is approaching to the dispersion
relation (12) of Cahn and Hilliard.

4. Critical parameters for hyperbolic decomposition

4.1. Critical wavelength for decomposition

Cahn [2] has found a critical wavelength �c above which the infinitesimal sinusoidal
fluctuations of the concentration are irreversibly growing. Particularly, he confirmed
the concept of Hillert [12] that �c !1 with approaching the spinodal at which one
has @2f=@c2 ¼ 0.

To find the critical wavelength for decomposition under local non-equilibrium
diffusion, we expand fh(c) in equation (2) about some concentration c0 that
is fhðcÞ ¼ fðc0Þ þ ðc� c0Þð f

0
cÞc¼c0 þ 0:5ðc� c0Þ

2
ð f 00ccÞc¼c0 þ � � � Along the z-axis,

824 P. Galenko and V. Lebedev
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composition is represented by a series of sinusoidal waves with components of the
following form: c� c0 ¼ ac cosðkzÞ, where ac is the amplitude. Substituting c� c0
into the expression for fh(c) we perform integration of the functional (2) over the
volume v. Then, for the difference of the Helmholtz free energy,
�F ¼ Fðc, ~JÞ �

R
v fhðc0Þdv, between a system with sinusoidal concentration and a

homogeneous system, respectively, one gets:

�F

v
¼

a2c
4

f 00cc þ "
2
ck

2
z

� �
: ð13Þ

For the reasonable cases of the positive surface tension, "2c > 0, one can consider two
important points. First, with f 00cc > 0 the solution is stable against fluctuation of
concentration of any wavelength: the free energy only increases in this case,
�F > 0. Second, with f 00cc < 0 the solution is unstable with respect to the critical
wavelength for decomposition which can merely be found by taking the zero value
for the square bracket in equation (13):

kc ¼ 2p=�c ¼ �f
00
cc="

2
c

� �1=2
, f 00cc < 0: ð14Þ

Therefore, with f 00cc < 0 and for � > �c, the free energy decreases, �F < 0, and
decomposition starts to proceed. Equation (14) clearly shows that as the composition
tends to the values lying in the spinodal, f00cc ¼ 0, the critical wavelength approaches
infinity, �c!1 [2, 12].

4.2. Amplification rate of decomposition

Using equation (10), the imaginary part of the frequency at k<kc is defined by

!� ¼ ð2�DÞ
�1
�1� 1� 4k2�DM f 00cc þ "

2
ck

2
� �� �1=2h i

: ð15Þ

In this expression, the ‘plus’ and ‘minus’ signs correspond to the growth or to the
decay of solution (9), respectively. After expanding the square root in
equation (15) for 4k2�DM½ f

00
cc þ "

2
ck

2
� � 1 one gets in the local equilibrium limit

the expression:

lim
�D!0

!þ ¼ �k
2 M f 00cc þ "

2
ck

2
� �

, ð16Þ

which is the kinetic amplification rate obtained by Cahn [2] for a purely diffusion
regime. Therefore, equation (15) can be interpreted as the kinetic amplification
rate for both dissipative and propagative regimes of atomic transport described by
equation (8).

From the amplification rate !þ the maximum can be obtained by differentiation
of equation (15) with respect to k. The extremum condition, @!þ=@k ¼ 0, gives
maximum frequency

!mðkmÞ ¼ ið2�DÞ
�1
�1þ 1þ �DMðf

00
cc="cÞ

2
� �1=2h i

ð17Þ

at

km ¼ 2p=�m ¼ �f
00
cc=ð2"

2
cÞ

� �1=2
, f 00cc < 0: ð18Þ

Spinodal decomposition of a binary system 825
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Consequently, the maximum wavelength (18) is exactly
ffiffiffi
2
p

times larger than the
critical wavelength (14) of instability against fluctuations of concentration.

5. Discussion

For the Cahn–Hilliard theory, the amplification rate for decomposition is given by
equation (12). Normalizing this expression on the imaginary part of the expression
!mðkmÞ ¼ iM½f 00cc=ð2"cÞ�

2 (that is found from equation (17) in the limit �D ! 0) one
gets the following relation

!ðqÞ�=q2 ¼ ½!ðkÞ=!ðkmÞ�=q
2
¼ 4ð1� q2Þ, q ¼ k=kc, ð19Þ

where kc is given by equation (14).
Within the hyperbolic model, the amplification rate for decomposition !þ is

given by equation (15). Therefore, using equations (14) and (17), one can get the
following relation

!ðqÞ�=q2 ¼ ½!þðkÞ=!ðkmÞ�=q
2
¼

1

q2
1þ q2ð1� q2Þ�DMð�f

00
cc="cÞ

2
� �1=2

�1

1þ �DMð�f
00
cc="cÞ

2
� �1=2

�1
, ð20Þ

which transforms into equation (19) in the local equilibrium limit �D! 0.
Figure 1 shows the relationship ‘!�ðqÞ=q2 versus q2’ given by equations (19)

and (20). As can be seen, Cahn–Hilliard theory predicts the linear law (dotted
line in figure 1) which is practically not observable [4]. The present model

0.00 0.25 0.50 0.75 1.00

0

4

8

12

ω
* (

q)
/q

 2

Dimensionless wave vector, q 2

Modified at τ*=20

Modified at τ*=1.5
Classic 

Figure 1. Comparison of the function !�=q2 for the parabolic diffusion equation (classic
Cahn–Hilliard equation for �D ! 0) and the hyperbolic equation (modified Cahn–Hilliard
equation). Curves for the hyperbolic equation are given for various values of the parameter
�� ¼ �DMð�f

00
ccÞ

2="2c ¼ ðlD=lcÞ
2 that specifies the square of the ratio between diffusion length

lD ¼
ffiffiffiffiffiffiffiffiffi
D�D
p

and correlation length lc ¼ "c=
ffiffiffiffiffiffi
2f0

p
. Non-linear behaviour is predicted with

lD=lc ¼ 1:225 (dashed-dotted) and lD=lc ¼ 4:472 (solid line).
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(modified Cahn–Hilliard model based on the hyperbolic equation) is flexible
enough to describe non-linear behaviour (dashed-dotted and solid lines in figure 1).
Such non-linear behaviour is typically observed in experiments (see, e.g., plots with
experimental data for amplification rates of spinodally decomposing glasses [3]) and
it directly depends on the parameter �� ¼ �DMð�f

00
ccÞ

2="2c in equation (20).
Now, we assume that the diffusion constant is given by D ¼ �Mf 00cc, the diffu-

sion length is defined by lD ¼ ðD�DÞ
1=2, and the equilibrium part of the free energy

density is described by the double-well fh ¼ f0c
2
ð1� c2Þ. From this it follows that

f 00cc ¼ 2f0ð1� 4cÞjc¼0:5 ¼ �2f0, where f0 is the characteristic height of the free energy.
Then, the parameter �� in equation (20) is defined by the square of the ratio between
the diffusion length lD and correlation length lc ¼ "c=

ffiffiffiffiffiffi
2f0

p
, i.e., �� ¼ ðlD=lcÞ

2.
Thus, with the increase of the correlation length (in comparison with the length of
diffusion), the parameter �� decreases and the non-linear behaviour of the function
q�2!�ðqÞ tends to the linear law predicted by Cahn and Hilliard, figure 1.

6. Conclusion

The model of hyperbolic spinodal decomposition [8] which is a special case of the
model of rapid phase transformations [9] has been further developed. Through the
analysis of the dispersion relation, it has been shown that the hyperbolic model
predicts the non-linear relationship ‘!�ðqÞ=q2 versus q2’. This is typically observed
in experiments on spinodal decomposition.
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