
Russian Information Retrieval Evaluation Seminar
St. Petersburg State University

EDBT Association

Joint RuSSIR/EDBT Summer School 2011

WEB OF DATA
August 15-19 | 2011 | Saint Petersburg

Proceeding of the Fifth Russian Young
Scientists Conference in Information

Retrieval

The joint RuSSIR/EDBT 2011 Summer School
August 15-19,2011

St. Petersburg
2011



UDC 025.4.03 (06)
BBK 73.431

Program Committee Chairs: Boris Novikov, Pavel Braslavsky

YSC Organizing Committee: Tatiana Lando, Lidia Pivovarova,

Dmitry Chalyy, Ilya Markov

Typesetting: Camera-ready by author,

data conversion by Dmitry Chalyy

Published according to the decision of YSC Organizing Committee

Web of Data: Proceedings of the Fifth Russian Young Scientists Conference

in Information Retrieval / Novikov В., Braslavsky P. (Eds.) — St. Petersburg

University Press, 2011. — 80 pp., 18 figures.

ISBN 978-5-288-05225-5

These Proceedings present the research results presented by the participants
of the 5th Russian Young Scientists Conference in Information Retrieval. The Conference
was held within the joint RuSSIR/EDBT 2011 Summer School «Web of Data»:
the 5th Russian Summer School in Information Retrieval and the 10th Extended
Database Technology summer school. The series of RuSSIRs dedicated to theoretical
and practical aspects of information retrieval was started in 2007 in Ekaterinburg
aiming to promote academical research in information retrieval in Russia, extend the
co-operation of the young scientists and to develop the interinstitutional network
between researchers working in the feld. The EDBT Summer Schools are a well
established and successful international series organized every two to three years and
has been very popular among young researchers in the database area.

The materials published in the Proceedings have been reviewed and approved
by the Program Committee of the Conference with the assistance of external experts.

UDC 025.4.03 (06)
BBK 73.431

©SPSU,2011
ISBN 978-5-288-05225-5 © ROMIP, 2011



SIMPLE ALGORITHM TO MAINTAIN
DYNAMIC SUFFIX ARRAY FOR TEXT INDEXES

Dmitry Urbanovich, Pavel Ajtkulov
Udmurt State University

e-mail: hunlO@yandex.ru, ajtkulov@gmail.com

Abstract
Dynamic suffix array is a suffix data structure that reflects various patterns in a mutable

string. Dynamic suffix array is rather convenient for performing substring search queries over
database indexes that are frequently modified. We are to introduce an O(nlogn) algorithm that
builds suffix array for any string and to show how to implement dynamic suffix array using this
algorithm under certain constraints. We propose that this algorithm could be useful in real-life
database applications.

Keywords: dynamic extended suffix array, string matching, text index.

1. INTRODUCTION
Suffix array is a permutation of all suffixes of a given string that sorts them
lexicographically. Suffix array has numerous applications, especially in
string matching [1], bioinformatics [10] and text compression [11].

Here is an example of suffix array built for the string "banana":
Table 1. Suffixes' numeration and suffix array

(0)a

(l)na

(2) ana

(3) nana

(4) anana

(5) banana

(0)a

(2) ana

(4) anana

(5) banana

(l)na

(3) nana

Left column shows how suffixes are numbered*. Right column shows
how (0,2,4, 5,1, 3) suffix array sorts the suffixes.

There are a lot of suffix array construction algorithms for immutable string
[1,6,7]. None of them allow you to reflect changes in text efficiently. However,
efficient algorithms for maintaining dynamic suffix structures exist [2,4, 5].

In this paper we introduce an algorithm that maintains suffix array for
string that can grow to the left only. One can perform any suffix array aware
algorithm on this data structure, because it maintains LCP information as

" We number suffixes in reverse order. We do so because our approach builds suffix array by
successive insertions of characters at the beginning of the string. It's convenient to preserve old
numbers as it clarifies what happen after insertion.

40 YOUNG SCIENTISTS CONFERENCE IN INFORMATION RETRIEVAL



Dmitry Urbanovich, Pavel Ajtkulov. Simple Algorithm to Maintain Dynamic Suffix...

well. For example, you can use classical algorithm to find all occurrences of
pattern in text [1]. However, there will be additional O{log n) overhead due
to data structures used (see section 3.1 for details).

Also the algorithm can maintain suffix array for a string that consists
of records (record is a substring which ends with special character that
appears nowhere else in the record). Every record can be removed and new
record can be inserted at the beginning of the string. This results in data
structure that allows searching for any substring in all records. It's similar
to suffix data structures on words (suffix arrays on words [8], suffix trees on
words [9]) in sense that you can search inside records only, but, as opposed
to structures on the words, our structure can find any substring, not only
word-aligned one.

In next section, we describe basic ideas which background the
algorithm. In "Details" section, we describe the algorithm itself.

2. BASIC IDEA
Basic idea is to restrict operations on string in such a way that only minimal
changes in the suffix array will happen.

Table 2. Insertion of "s" letter at beginning of the "issippi" string

(0)i (0) i

(3) ippi (3) ippi

(6) issippi (6) issippi

(Dpi (Dpi

(2) ppi (2) ppi

(4) sippi (4) sippi

(5) ssippi (7) sissippi

(5) ssippi

One of these operations is insertion of single character at the beginning
of the string. For example, consider we already built suffix array for string
"issippi", and now we are inserting the character "s" at beginning (our string
will become "sissippi").

As you can see, relative order of 0-6 suffixes isn't changed. The only
thing happened is a single insertion of new suffix between 4 and 5. The
same will happen in general case, which is described in "Single Insertion"
section. Clearly, we can insert any number of characters by this way.

The second operation is a removal of a special substring called a
"record". As we said before, record is a substring which ends with special

YOUNG SCIENTISTS CONFERENCE IN INFORMATION RETRIEVAL 41



Dmitry Urbanovich, Pavel Ajtkulov. Simple Algorithm to Maintain Dynamic Suffix...

character that appears nowhere else in the record. In fact, we can safely
remove such a substring (see "Record Removal" section) without disturbing
other suffixes' relative position.

Suffix array can be enhanced by LCP array maintenance. LCP array is
an array which shows the length of longest common prefix for each pair of
suffixes that have adjacent positions in suffix array. LCP array is very useful,
especially for improving various search algorithms time complexity [1], and
our algorithm can optionally maintain it.

3. DETAILS

3.1. Data Structure
As we need to perform efficient modifications in suffix array, we need a data
structure that supports indexed access, arbitrary insertions, removals and
range minimum query [3, 5], which is based on balanced tree (order-sta-
tistic tree [12]). It is also used to find position of suffix in suffix array, when
suffix is given by its length. (This operation implements inverted suffix ar-
ray.) All operations are performed within O(log n).

3.2. Single Insertion
Insertion of single character at the beginning of the string is two-step. First, we
find the place where to insert new suffix. Second, we make the insertion itself.

Clearly, inserting a character at the beginning doesn't change existing
suffixes. Hence, their relative position will not be changed. And of course, we
need to insert new suffix just because the string became one character larger.

In order to find the place where to insert new suffix, we perform a
binary search over suffix array comparing some of suffixes with a new one
(see "Comparator Implementation"). This step works in O(log2n), where
n is a length of string. It got additional logarithmic multiplier due to fact
that comparator accesses suffix array and its inversion via data structure
described above.

Because insertion is a separate step, O(/qg2«) overall complexity isn't affected.
Additionally, if we want to maintain LCP array, we need to update

at most two values in that array, because at most two pairs of adjacent
suffixes have been changed (they are neighbors of the new suffix). See "LCP
Calculation" for details.

3.3. Record Removal
To remove the record we just need to remove all the suffixes that begin in
positions corresponding to the record. We don't need to change relative or-
der of other suffixes.

42 YOUNG SCIENTISTS CONFERENCE IN INFORMATION RETRIEVAL



Dmitry Urbanovich, Pavel Ajtkulov. Simple Algorithm to Maintain Dynamic Suffix...

First of all, that's so, because relative order of suffixes, which begin in
positions of the same record, doesn't depend on other records: positions of left-
most special character in such suffixes never coincide — that is, lexicographical
order of such suffixes depends on characters of single record only.

However, suffix array may become inconsistent after record removal
operation. Let's look at the example. Given a string "ac|bs|ac|b|", where "|" is
a special character. We are to remove "bs|" record.

Table 3. Example of what happens after removal

(5) |ac|b|

(2) |b|

(8) |bs|ac|b|

(4) ac|b|

(10) ac|bs|ac|b|

(Db|
(7) bs|ac|b|

(3)c|b|

(9) c|bs|ac|b|

(6) slaclbl

(2) |b|

(5) |ac|b|

(4) ac|b|

(7)ac|ac|b|

(Db|

(3) c|b|

(6) cjac|b|

(5) |ac|b|

(2) |b|

(7) ac|ac|b|

(4)ac|b|

U)b|

(6) c|ac|b|

(3) c|b|

First column shows the state of suffix array before removal. Second
column shows the state after removal. Third column shows correct state of
suffix array for modified string ("ac|ac|b|"). As you can see, 2-7 suffixes in
second column are placed incorrectly. But it doesn't matter, because search
queries never contain special character. (If we truncate all the suffixes after
left-most special character, we will see that sorting is correct.)

To perform record removal within O(mlog и), where m is a length of
the record, we use the same data structure as described in previous section.

If we want to maintain LCP array, we need to update LCP value for
each suffix that is lexicographically previous to the suffix to be removed. See
"LCP Calculation" for details.

3.4. Comparator Implementation
Comparator lexicographically compares new suffix to be added against oth-
er suffixes. At first, it compares suffixes by their first letters. If letters are
equal, then comparison reduces to comparison of suffixes that obtained by
removing first letter of each of the suffixes to be compared. The order of re-

YOUNG SCIENTISTS CONFERENCE IN INFORMATION RETRIEVAL 43



Dmitry Urbanovich, Pavel Ajtkulov. Simple Algorithm to Maintain Dynamic Suffix...

duced suffixes is obtained from the structure that maintains the suffix array:
it can give us position of any given suffix in the suffix array and this position
gives us relative order of suffixes.

Here's sample implementation of comparator:
bool Compare(int pos) {

int idx = array[pos];
char fstCh = Str[Str.Length 1 idx];
if (fstCh == ch) {

if (idx ==0) {
return true;

}

int inverse = array.Getlnverse(idx 1);
return posLongestSuffix > inverse;

}
return fstCh < ch;

}

Variable pos shows the index of suffix to be compared with new suffix,
variable ch is a new character to be added. Str is a string, for which suffix
array array is already built. posLongestSuffix is a position of the longest suffix
in already built suffix array (it equals array.GetInverse(Str.Length-l)), inverse
is a position of suffix reduced from suffix with index pos in the suffix array.

We need to find where suffix given by its position in original string
is located in a suffix array. The structure that answers those queries is an
inversion of suffix array. It's essentially based on the same data structure
that supports efficient random access by index, insertions and deletions.
This inversion, of course, should be updated to reflect move of suffixes in
the dynamic suffix array.

3.5. LCP Calculation
When we insert new suffix, LCP value is calculated for the longest suffix and
its neighbors. This value is calculated with the same as comparators logic. If
first letters of suffixes are different, then their LCP is empty. In case they are
the same, their LCP will be greater than LCP of corresponding reduced suf-
fixes by one (reduced suffix is a suffix obtained by removing its first letter).

Reduced suffixes may be non-adjacent in suffix array. In this case, their
LCP equals min.<k<. LCPk, where i and; are positions of those suffixes [1].
Data structure, that implements our suffix array, can evaluate this minimum
within O(logn) operations (dynamic range minimum query, DRMQ) [3,5].

When we remove i suffix (where "f is a position of suffix in a suffix
array) then LCP. =mm(LCPj,, LCP) [1].

44 YOUNG SCIENTISTS CONFERENCE IN INFORMATION RETRIEVAL



Dmitry Urbanovich, Pavel Ajtkulov. Simple Algorithm to Maintain Dynamic Suffix...

4. CONCLUSION
We presented an algorithm of suffix array construction by successive inser-

tions at the beginning of the string. Also we presented how to remove spe-

cial type of substrings. Construction of suffix array for n -character string

requires O(n log^n) operations. Removal of fc-character substring requires

O(klog n) operations. We presented an algorithm that maintains auxiliary

LCP array. The algorithm can be used to maintain text database index which

supports insertion of new record, removal and replacing of existing ones.

The designed algorithm is simpler than other existing dynamic suffix

array construction algorithm [2,5].

REFERENCES
1. Manber U., Mayers G. Suffix arrays: a new method for on-line string searches //

SIAM Journal on Computing. -1993. -No 22. -P. 953-948.
2. Salson M., Lecroq Т., Leonard M., Mouchard L. Dynamic extended suffix ar-

rays // Journal of Discrete Algorithms. -2010. -Vol. 8. -P.241-257.
3. Shibuya Т., Kurochkin I. Match chaining algorithm for cDNA Mapping // Algo-

rithms in Bioinformatics: Third International Workshop, Budapest, WABI, 2003.
4. Russo L., Navarro G., Oliveira A. Dynamic Fully-Compressed Suffix Trees //

Proceedings of the 8th Latin American conference on Theoretical informatics,
LNCS. -2008. -P. 362-373.

5. Ajtkulov P. Symbol array processing, UBS, 28 (2010), -P. 126-178.
6. Pang Ко, Srinivas Aluru, Space-efficient linear time construction of suffix ar-

rays, Proceedings of the 14th Annual Symposium on Combinatorial Pattern
Matching, -P. 200-210,2003.

7. Dong Kyue Kim, Jeong Seop Sim, Heejin Park, Kunsoo Park, Linear-time con-
struction of suffix arrays, Proceedings of the 14th Annual Symposium on Com-
binatorial Pattern Matching, -P. 186-199, 2003.

8. P. Ferragina, J. Fischer, Suffix arrays on words, In Proceedings of the 18th Annu-
al Symposium on Combinatorial Pattern Matching, volume 4580 of LNCS, 2007.

9. A. Andersson, N. J. Larsson, K. Swanson, Suffix Trees on Words, Algorithmica
23, 1999.

10.D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge Univer-
sity Press, 1997.

11. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, 1994.

12.Cormen Т., Leiserson C, Rivest R.; Stein, Clifford (2001). Introduction to Al-
gorithms (second ed.). MIT Press and McGraw-Hill.

YOUNG SCIENTISTS CONFERENCE IN INFORMATION RETRIEVAL 45


